Reweighted Factor Selection for SLMS-RL1 Algorithm under Gaussian Mixture Noise Environments
نویسندگان
چکیده
The sign least mean square with reweighted L1-norm constraint (SLMS-RL1) algorithm is an attractive sparse channel estimation method among Gaussian mixture model (GMM) based algorithms for use in impulsive noise environments. The channel sparsity can be exploited by SLMS-RL1 algorithm based on appropriate reweighted factor, which is one of key parameters to adjust the sparse constraint for SLMS-RL1 algorithm. However, to the best of the authors’ knowledge, a reweighted factor selection scheme has not been developed. This paper proposes a Monte-Carlo (MC) based reweighted factor selection method to further strengthen the performance of SLMS-RL1 algorithm. To validate the performance of SLMS-RL1 using the proposed reweighted factor, simulations results are provided to demonstrate that convergence speed can be reduced by increasing the channel sparsity, while the steady-state MSE performance only slightly changes with different GMM impulsive-noise strengths.
منابع مشابه
Regularization Parameter Selection Method for Sign LMS with Reweighted L1-Norm Constriant Algorithm
Broadband frequency-selective fading channels usually have the sparsity nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) algorithms, e.g., least mean square with reweighted L1-norm constraint (LMS-RL1) algorithm, could bring a considerable performance gain under assumption of additive white Gaussian noise (AWGN). In practical scenario of wireless systems, however, c...
متن کاملIMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model
Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorate...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملExtra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm
The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 8 شماره
صفحات -
تاریخ انتشار 2015